
The prior probabilities of phylogenetic trees

Joel D. Velasco

Received: 25 June 2007 / Accepted: 16 December 2007 / Published online: 17 January 2008

� Springer Science+Business Media B.V. 2008

Abstract Bayesian methods have become among the most popular methods in

phylogenetics, but theoretical opposition to this methodology remains. After pro-

viding an introduction to Bayesian theory in this context, I attempt to tackle the

problem mentioned most often in the literature: the ‘‘problem of the priors’’—how

to assign prior probabilities to tree hypotheses. I first argue that a recent objection—

that an appropriate assignment of priors is impossible—is based on a misunder-

standing of what ignorance and bias are. I then consider different methods of

assigning prior probabilities to trees. I argue that priors need to be derived from an

understanding of how distinct taxa have evolved and that the appropriate evolu-

tionary model is captured by the Yule birth–death process. This process leads to a

well-known statistical distribution over trees. Though further modifications may be

necessary to model more complex aspects of the branching process, they must be

modifications to parameters in an underlying Yule model. Ignoring these Yule priors

commits a fallacy leading to mistaken inferences both about the trees themselves

and about macroevolutionary processes more generally.

Keywords Base rate fallacy � Bayesianism � Phylogenetic trees �
Phylogenetics � Prior probabilities � Systematics � Tree shape � Yule process

Introduction

Finding the solution to biological problems such as determining whether or not a

Florida dentist passed HIV on to his patients (he did—Metzger et al. 2002),

calculating whether or not brain size and testicle size are adaptively correlated in

bats (they are anti-correlated—Pitnick et al. 2006), and determining how terrestrial
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mammals arrived in Madagascar (multiple separate rafting events rather than a land

bridge—Poux et al. 2005) all require knowledge of the evolutionary history of

certain groups. Recovering this history is the project of phylogenetic inference—the

goal is to build a phylogeny, or genealogical history, of a group of genes, species,

higher taxa, or whatever the objects of study happen to be.

This paper advocates the use of a particular methodology of phylogenetic

inference—Bayesian inference. Before I offer any justification for this, I briefly

describe the problem of phylogenetic inference and describe Bayesianism in this

context. I then provide a minimal defense for the Bayesian approach. For many

systematists, the reason to prefer other methods comes not from their belief in the

correctness of their preferred methodology, but rather is a response to a supposed

problem for Bayesianism—the ‘‘problem of the priors.’’ By correcting serious

misunderstandings about this problem and developing the beginning of a solution, I

hope to bolster the overall defense of Bayesian phylogenetics.

In a typical problem of phylogenetic inference, we are concerned with recovering

facts about the genealogies of particular biological groups at a variety of levels. The

data used to construct these phylogenies can in theory be morphological, ecological,

molecular, or any number of different types of information, but the majority of

published phylogenies today come from DNA sequences of individual organisms. It

is assumed that the true underlying history of these sequences is that of common

ancestry and descent with modification. This history is then represented as a binary

branching tree. The tips, or ‘‘leaves’’ of the tree are the DNA sequences and the

internal nodes represent common ancestors—the points in the past of ‘‘coalescence’’

when the descendant sequences trace back to the same token sequence present in a

single individual. Though a conclusion about the phylogeny of species is nearly

always drawn, the philosophically minded reader is sure to recognize that moving

from a tree of DNA sequences to a tree of another kind such as a species tree

requires a conceptual leap; this second stage of inference needs a separate

discussion of its own and can safely be ignored here.

The ‘‘phylogeny’’, the ‘‘evolutionary tree’’, or just simply ‘‘the tree’’ may or may

not contain information such as branching dates, rates of change along branches, or

ancestral character states, but it must give at least a branching diagram with the tips

labeled. This information uniquely specifies any and all clades, or monophyletic

groups, on the tree. This branching diagram is called the tree topology and is

generally the primary object of inference for the systematist because knowledge of

the topology is a prerequisite for most further inquiries about the history. Unless

specified otherwise, ‘‘tree’’ here refers just to the tree topology.

Bayesian phylogenetics

Maximum Parsimony and Maximum Likelihood are two families of methods that

have dominated phylogenetics discussion for the past 20 years and both have their

advocates (Felsenstein 2004). Although there is a long and rich history of the study

of Bayesian statistics generally, it is only in the past ten years that Bayesian methods

of inference have been used in phylogenetic studies (Rannala and Yang 1996,

Huelsenbeck et al. 2001). Bayesianism has taken some time to catch on in
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popularity and the details and their consequences certainly have not been as widely

discussed as those attaching to other methods (Randle et al. 2005). For example,

Felsenstein in his attempt at a comprehensive textbook Inferring Phylogenies (2004)

spends only one of 35 chapters on Bayesian methods. However, Bayesian

methodology is gaining popularity with time and today it is widely used alongside

other methods in published results.

The central idea in Bayesian phylogenetics is that all inferences should be made

by utilizing the posterior probability distribution of the trees. Bayes’ theorem has

the following consequence:

The probability that a tree is correct given the sequence data that we have

¼ PrðTree jDataÞ ¼ PrðData jTreeÞ � PrðTreeÞ
PrðDataÞ

Pr(Tree), called the prior probability of the tree, is determined from a probability

distribution over all possible trees given before the data are examined. The

probability of the data—Pr(Data)—is a normalizing constant simply used to make

sure that the posterior probabilities sum to 1. It is equal to the sum of the

probabilities of getting the data on every possible tree weighted by the particular

tree’s prior probability. Labeling each tree topology as T1, T2,...Ti, we have:

PrðDataÞ ¼
X

Ti
PrðData jTiÞ � PrðTiÞ

Pr(Data|Tree) is called the likelihood of the tree, but it cannot be directly calculated

since the tree topology alone does not give us sufficient information to assign a

probability to the data. Rather, we need additional information such as the branch

lengths (the expected number of changes per site along a particular branch) along

with some model of evolution that will contain its own parameters to be estimated

such as the nucleotide substitution rates.

The Bayesian method for dealing with these nuisance parameters (parameters

that aren’t of primary interest) is to ‘‘average over’’ them by integrating them out. In

the frequentist method called ‘‘Maximum Likelihood’’, for each tree, nuisance

parameters such as branch lengths and substitution model parameters are set at the

value that would maximize the probability of the data on that particular tree. The

Maximum Likelihood tree is by definition the tree which is a conjunct in the tree-

plus-nuisance-parameters conjunction which makes the data most probable. Thus,

confusingly, the likelihood of the tree used in Bayes’ Theorem is not the same as the

tree’s Likelihood score used for Maximum Likelihood inferences.

Treating nuisance parameters in the Bayesian way, if we denote a fixed set of branch

lengths as v and a fixed set of parameter values of the model as h we now have:

PrðDatajTiÞ ¼
Z

v

Z

h
PrðDatajTi; v; hÞ � Prðv; hjTiÞdvdh

Substitution in both the numerator and denominator yields this formula:

PrðTijDataÞ ¼
R

v

R
h PrðDatajTi; v; hÞ � Prðv; hjTiÞvdh� PrðTiÞP

Ti

R
v

R
h PrðDatajTi; v; hÞ � Prðv; hjTiÞdvdh� PrðTiÞ
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The above formula tells us the posterior probability of any particular tree

hypothesis. If we are interested in something else, say the probability that a

particular group forms a clade, since this is, in effect, a large disjunction (the true

tree could be any one of the trees that contains that clade), the posterior probability

of that clade is simply the sum of the posterior probabilities of all trees which

contain that clade. The probability distribution of any other parameters such as a

branch length, the individual substitution rates, or the ratio of transitions to

transversions are all similarly calculated. The Bayesian philosophy thus provides a

framework for answering a host of relevant theoretical questions all at the same

time. Of course actually calculating the full posterior distribution is another matter.

However, there is reason to be hopeful here. Computational methods for

numerically estimating multi-dimensional integrals are quite advanced. The

standard idea is to use Markov Chain Monte Carlo (MCMC) methods to estimate

the posterior distribution. For an introduction to these methods in phylogenetics see

Larget and Simon (1999) and Larget (2005).

How we can actually infer the posterior probability and how we can do it in a

computationally efficient manner are important practical questions, but it is to the

theoretical issues that I now turn. These questions assume that we have access to the

various posterior probability distributions and ask why we should use these to make

our phylogenetic inferences rather than use some other quantity. If there are deep

theoretical problems with Bayesian methodology, it hardly matters if we have an

efficient way of calculating the relevant probabilities.

One important, though hardly decisive, consequence of Bayesian methodology is

the ease of interpreting results. Since the posterior probability of a tree just is the

probability that the tree is correct (given our data and our model of evolution), the

tree with the highest posterior probability is the tree which is the best supported. In

fact, the strength of its support is measured directly by the posterior. Other facts

about the problem, such as which tree would require the fewest nucleotide

substitutions, which is what the Parsimony score captures, are of interest only in so

far as they are a reliable guide to which tree is true (which they often aren’t).

In addition, unlike other methods, we can judge the strength of the evidence for

all aspects of the tree at the same time without needing to reanalyze the data using

different techniques. The probability that a particular group forms a clade, that two

particular sequences have coalesced in the last one million years, that sequence A is

more closely related to B than to C, or any other question about the tree is measured

using the posterior distribution. None of these problems are easily analyzed with

other methods which are usually designed just to find the best topology. While

particular tests have been developed (see Felsenstein (2004) for a host of examples)

none has a straightforward statistical interpretation that is useful and as such they

generally appear to be disjoint, ad-hoc tests with no underlying, unified justification.

While a theoretical justification can be constructed for using posterior

probabilities to guide our inferences, I will not attempt to do so here (for that and

a host of similar references, see Howson and Urbach (2005)). Rather, I will focus on

a few reasons why one might object to Bayesianism in this context. Some

systematists believe that probabilities and perhaps even all statistical methods
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simply cannot be used to make inferences concerning a particular group’s

evolutionary history since it is a ‘‘unique event’’ – meaning it has occurred only

once (Siddall and Kluge 1997, but see Haber 2005) or believe that Parsimony has

some special justification apart from its statistical behavior (see Farris 1983; Kluge

2005 or any of a host of papers in-between, but see Sober 1988). From those who

are more statistically minded, there are worries that the posteriors might be overly

sensitive to the choice of an evolutionary model or that Bayesian inference treats

nuisance parameters as random variables and thus is not properly frequentist as

Maximum Likelihood appears to be (though see Yang 2006). While these are

important objections, they have been dealt with elsewhere (besides the above

references, see for example Huelsenbeck and Ronquist 2005) and I will not discuss

them further.

While there are certainly more issues to discuss, the central problem which has

yet to be adequately dealt with and is perhaps the most common objection to

Bayesian phylogenetics and to Bayesian inference more generally is the ‘‘problem

of the priors’’—how to assign prior probabilities to the hypotheses under test. As

Felsenstein, an advocate of frequentist methods, puts it: ‘‘If the prior is agreed by all

to be a valid one, then there can be no controversy about using Bayesian inference’’

(Felsenstein 2004: 300). While there would of course still be controversy, his point

is that to the statistically minded theoretician, there shouldn’t be.

While a subjective Bayesian may respond that prior probabilities ought simply to

represent the prior beliefs of the particular investigator, it is certainly a worthwhile

project to attempt to model a certain kind of ignorance for the use of priors. This is a

direct attempt to avoid biasing the results in favor of our prior conceptions. After all,

we want results that ought to be taken seriously by a wide range of scientists and we

may want to know what ‘‘just this data’’ should lead us to believe. This is one of the

goals of so-called ‘‘objective Bayesianism’’ (perhaps better called ‘‘Interpersonal

Bayesianism’’—Kadane 2006). As long as we have a proper understanding of

ignorance, it would appear, at least in certain cases, that we should attempt to model

ignorance in the priors. But there are many things that we appear to be ignorant

about—the tree topology, its branch lengths, which groups form clades, etc. It might

seem that modeling ignorance with respect to some of these factors is simple—for

example, to model ignorance with respect to tree topologies we should assign equal

prior probabilities for all topologies. This distribution is called a uniform prior on

topologies. However, there are many different ways of conceiving of a tree. The

shape of the tree refers to the branching diagram with no labels at the tips and so has

less information than the topology. The topology is simply an unlabeled shape with

labels added to the tips. In addition, we may be interested in more than just the

topology. The labeled history (sometimes called ‘‘ranked topology’’—e.g. Semple

and Steel 2003) refers to the topology plus a temporal ordering of the nodes. These

differences will become important later; they are depicted in Fig. 1.

To get a topology from a shape, labels are added to the tips. In this example, if

‘‘B’’ and ‘‘C’’ were switched, we would have the same shape but a different

topology. Recall that topologies do not specify the time at which the nodes occur. In

a labeled history, the nodes are labeled to represent their relative temporal ordering.

In this example, C and D split from each other (node 3) before A and B split (node
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4). If ‘‘3’’ and ‘‘4’’ were reversed, we would have the same topology but a different

labeled history.

Some shapes are consistent with more topologies than others; if each topology

has an equal prior, not all shapes will be equally probable. Similarly, some

topologies are consistent with more labeled histories than others so assigning equal

priors to all topologies means that not all shapes nor all labeled histories will be

equally probable. This is apparently a problem since it would appear that we are

ignorant with respect to each but yet we cannot model ignorance with respect to all

three. However, I suggest that this way of thinking about ignorance is a mistake. We

are not ignorant of everything regarding topology and shape—after all, we know the

logical facts that connect them. The kind of ignorance we ought to be modeling does

not always lead to uniform priors. As an example of what I mean, I now turn to a

recent example that purports to show that the use of priors in phylogenetics

inevitably leads to bias results.

Priors on clades

Nearly every published paper using Bayesian methods uses a uniform prior

distribution on tree topologies which assigns equal prior probability to each possible

topology. Partly this is motivated by the simplicity of the proposal combined with

its being the only distribution available (other than entering your own constraints for

particular clades) in popular computer programs such as Mr. Bayes (Huelsenbeck

and Ronquist 2001). And without careful examination, the proposal does seem

sensible—after all, why should we have a prior preference for one topology over

another when the topology itself is the primary object that we are trying to infer? In

fact, by not using priors at all, if used as a guide to truth, Parsimony and Likelihood

analysis are carried out in a way that effectively treat all topologies as equally

Shape
(unlabeled branching diagram)

Topology
(add labels to tips)

Labeled History
(time order the nodes)

EDCBA

EDCBA

4 3

2

1

Fig. 1 Three different aspects
of a tree

460 J. D. Velasco

123



probable a priori. This fact has not been traditionally seen as biasing results in any

way. But as Pickett and Randle (2005) (henceforth ‘‘P&R’’) point out, a uniform

prior distribution on topologies implies a non-uniform distribution on the prior

probabilities of clades—in particular, the probability that a particular group forms a

clade depends on its size relative to the total number of taxa in the analysis. Smaller

and larger groups have higher probabilities while middle-sized groups have the

lowest probabilities. Figure 2 provides an example, when sets of different sizes are

drawn from 50 taxa placed at the tips (or ‘‘leaves’’) of the tree.

While the particular values would change with a different number of taxa in the

study, the shape of the curve will not. Any arbitrary group of taxa is a possible clade

and P&R contend that all such groups regardless of their size should have the same

prior probability of forming an actual clade in a given problem with a fixed group of

taxa. Analyzing simulated data as well as data from seventeen published empirical

studies, P&R argue that the use of the uniform distribution has biased the posterior

probabilities in predictable ways, namely, that the very smallest and largest clades

typically have the highest posteriors probabilities and the middle-sized clades have

the lowest. This result corresponds to the prior distribution on clades imposed by

setting a uniform prior over topologies. Several subsequent papers and books have

cited this fact (e.g. Goloboff and Pol 2005 and Yang 2006) and different examples

have been produced which lead to the same results. The authors agree that these

facts lead to devastating conclusions for the Bayesian.

This line of thinking is based on misunderstanding what it is for the posterior to

be biased and what the appropriate understanding of ignorance is. It is entirely

proper for different sized clades to be more or less probable a priori since the

appropriate understanding of a priori in this context builds in relevant background

knowledge. P&R’s claim that you can’t have both uniform priors on topologies and

on clades is correct; in fact, Velasco (2007) strengthens their proof by showing that

on any probability distribution on trees (not just the uniform one) not all clades can

Fig. 2 A graph depicting the probability that a group of a given size forms a clade on a tree with 50 taxa
when a uniform prior on topologies is used
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be equally probable. There is nothing special about the uniform prior on topologies

which conflicts with uniform priors on clades—uniform priors on clades is simply

inconsistent. Having every possible clade be equally probable is not something that

we could have even if it were desirable (which it isn’t.) Once we see why this is so,

it becomes easier to see what conclusions we should draw from it.

There is an easy explanation for why it is impossible for every possible clade to

have an equal probability of forming an actual clade on the true tree. In a given

problem with a fixed set of taxa, the probability that a group of a particular size

forms a clade is just the expected number of clades of that size divided by the

number of possible clades of that size. Lets use two specific sizes (clades of size 2

and 3) as examples to show that they can’t be equally probable. The fact that not all

of the probabilities can be equal can be deduced from the following two facts:

(1) Since smaller clades are nested inside larger ones, on any tree (and therefore

on the true tree), there are at least as many actual clades of size two as there are

of size three. Therefore, on any probability distribution over trees:

the expected number of clades of size 2 C the expected number of clades of size 3.

(2) When there are at least five leaf taxa:

the possible number of clades of size 2\ the possible number of clades of size 3.

Therefore, (when we have at least five taxa),

the expected number of clades of size 2

the possible number of clades of size 2
6¼ the expected number of clades of size 3

the possible number of clades of size 3

So not all possible clades of size two or three could be equally probable and a

fortiori not all possible clades can be equally probable.

To determine the actual numerical probabilities, we need to know two things: the

numbers of possible and actual clades of each size. The number of possible clades of

size x is just the number of possible ways of choosing a group of size x from the

collection of n taxa which is just n choose x ¼ n!
x!ðn�xÞ! : The number of actual clades

of a given size will depend on the tree. A uniform distribution on tree topologies

yields a particular distribution on the expected number of clades of any particular

size first calculated in Brown (1994). The above facts are perhaps more easily

appreciated by attending to the following graphs in Fig. 3:

The first graph plots how the size of a clade determines the number of possible

clades of that size. I have used n = 50 taxa as an example, but the shape of the curve is

the same for any number of taxa. Notice that the scale is logarithmic meaning that there

are vastly more possible clades of size 25 than, say, size 10. The second graph plots

how the size of a clade determines the expected number of clades of that size on the

uniform distribution on topologies. Since the probability of a clade is just the expected

number of clades of that size divided by the number of possible clades of that size

(assuming all clades of the same size have the same probability), if the probability of a

clade is to be the same for every size, these two curves must have the exact same shape

(one should be the other multiplied by a constant—the probability). Notice that the

‘‘expected clades’’ curve is calculated under a uniform prior on topologies (as in
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Picket and Randle 2005)—for other topology distributions the curve varies in shape

slightly, but a few aspects remain constant, such as the fact that its peak must be at size

2. Since no distribution on trees gives it the same shape as the ‘‘possible clades’’ curve,

the probabilities of all possible clades can never be identical. A formal proof of this fact

is given in Velasco (2007).

So what should we make of this theorem? It might be thought that we have just

shown that Bayesianism is a flawed methodology. After all, haven’t we just shown

that it is impossible to model ignorance with respect to clades since clades of

Fig. 3 Two graphs comparing the number of possible clades of a given size to the expected number of
clades of that size. The expected number of clades (the value on the bottom) divided by the number of
possible clades (the value on the top) is the probability that that group forms an actual clade. This figure is
taken from Velasco (2007)
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different sizes must have different probabilities? And isn’t this obviously bad? As

P&R put it,

Few, if any, systematists believe a priori that the probability of monophyly has

anything to do with the number of taxa hypothesized to be monophyletic.

Certainly, the prior assertion that small clades and large clades are more

probable than mid-sized clades lacks biological relevance. As such, a return to

optimality per se is warranted. (Pickett and Randle 2005: p. 209)

P&R as well as Goloboff and Pol (2005) and Yang (2006) claim that uniform

priors on topologies introduce a bias in favor of smaller and larger clades and

against medium sized ones. We have just seen that this disparity in probabilities is

guaranteed to occur regardless of our choice of priors on trees. Their choice of the

word ‘‘bias’’ indicates that they think that this is a bad thing. P&R think this justifies

abandoning Bayesianism as it is currently practiced and they suggest three

alternative, incompatible methods for being Bayesian while attempting to artificially

‘‘correct’’ for this bias. However, their conclusion that using priors introduces an

unacceptable bias into the problem rests on a mistake. We want the probabilities of

clades to depend on their size. Artificially changing the posteriors or altering how

we measure the strength of the evidence to correct for this would actually introduce
bias. There is biological relevance to the fact that clades of size two should have

higher priors than those of size three—we know from the way that clades are

produced that clades with larger numbers of taxa have smaller clades within them.

Basic mathematical facts combined with background biological facts indicate that

we should believe that groups with more taxa are less likely to be clades. Claiming

ignorance with regard to whether the true tree contains a particular clade of size two

or whether that tree contains a particular clade of size three is like claiming

ignorance with respect to whether some random integer is divisible by 2 or divisible

by 4. Ignorance does not entail equally probable.

To head off a possible response, notice that the idea of clades nested within

clades explains why smaller clades should be more probable, but this doesn’t

explain why larger clades also have higher priors. But this is not a problem. The

high probability of very large clades is simply an artifact of the design of the

problem. If our problem uses 10 taxa, for nine of them to form a clade, all it takes is

for the tenth to be outside of the rest. However, that same group of nine taxa is

much less likely to form a clade if the problem considered 50 taxa. Unlike a

problem with 10 taxa, with 50 taxa, clades of size 8 are more probable than clades

of size 9. The bias toward very large clades essentially comes from assuming that all

taxa under consideration form a clade. Just as the conditional probability that A and

B form a clade is relatively high given that A, B, and C do, the conditional

probability of nine taxa forming a clade is high given that we are acting as if they

are inside a clade of 10 taxa. This fact is more easily appreciated by recalling that

‘‘forming a clade’’ is only meaningful in the context of a particular problem. For a

group to form a clade in a particular problem, the members of the group must be

more closely related to each other than to any other taxa under consideration.

Humans and Gorillas form a clade as long as Chimpanzees are not one of the taxa

under study. There is nothing objectionable about this either.
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This argument shows that the probability of a clade must depend on its size, but if

we do not carefully formulate the question, there might appear to be obvious

counterexamples. If we think of particular groups, it is tempting to conclude that

P&R might be correct after all—for example, what should the prior probabilities of

monophyly be for the following groups: apes, mammals, and vertebrates?

According to the above reasoning, the prior on apes should be low, mammals

extremely low, and vertebrates unbelievably tiny. But our actual confidence in the

three groups doesn’t appear to depend on size. So are P&R correct after all? No.

There are several problems with the supposed analogy, but the major statistical error

is that this is an instance of sampling bias. Ignore the fact that many systematists

would simply define these groups in such a way as to guarantee that they are

monophyletic and imagine that we are working with a more traditional definition

based on characters—or think of ‘‘vertebrates’’ as rigidly designating some set of

taxa which we currently believe are vertebrates. The sample is biased because we

have selected clades that have a high posterior probability of being monophyletic

and then we are asked to imagine what their priors should be. For example, they

each have what appear to be uniquely derived characters. Of course clades of

different sizes can have the same posterior probabilities. But this is not the claim.

P&R are claiming that before we examine arbitrary groups of taxa that we known

nothing about, we should be equally confident that they are monophyletic regardless

of their size. But this is absurd. Imagine I assign each of 100 primate species a

different number and then randomly select some of those numbers. What are the

chances that the numbers I have selected pick out a monophyletic group? The

chances will obviously vary with the number of taxa that I select. If I select two

primate species at random, the odds that I have selected a monophyletic group are

low, but they are vastly higher than the odds that I have selected a monophyletic

group if I had selected fifty random species. Yet this is exactly analogous to the

question under consideration. Size does matter.

Possible priors and the principle of indifference

The above argument shows that we have to be careful when we wish to model

ignorance, but it does not tell us how we actually ought to do so. We need to further

constraints to guide our priors. The above arguments only show that clades of

different sizes should have different probabilities but it is clearly correct that all

possible clades of size 2 should be equally probable, all possible clades of size 3

should be equally probable, etc. In other words, if we ask some question about a

group of n taxa that are otherwise unknown to us, it shouldn’t matter which n taxa

we select. If we want to know the probability that A is closer to B than to C or that A

and B coalesce in the past million years, it shouldn’t matter which taxa A, B, and C

represent. Distributions that satisfy this condition are called label-invariant. If we

want to model ignorance with respect to the particular taxa we choose, we must use

a label-invariant prior. While this is certainly helpful, it still leaves us with an

infinite number of choices. For example, a uniform prior on topologies satisfies this

condition, but so do many distributions that entail that some shape has probability
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one. While these second types of distributions are certainly implausible, we can’t

rule them out simply on the basis of the condition that we must treat each taxon

equally.

Although uniform priors on topologies are typically used, we have already seen

that several authors believe that it leads to biased results that can be uncovered by

examining other factors such as particular clades. While unequal priors on clades

are not a good reason to give up uniform priors on topologies, perhaps looking

elsewhere will provide just such a reason. For example, with four taxa there are

15 different topologies—12 have the pectinate A(B(C,D)) shape (this notation

means that C and D form a clade which is nested inside B, C, and D which form a

clade) while only three have the balanced (A,B), (C,D) shape where there are two

clades of size 2. So uniform priors on trees introduces a skewed distribution on

shapes. Is this acceptable? A traditional defense for uniform priors on topologies

might appeal to the principle of indifference—when there is no epistemic reason

to prefer one topology over another, they should all have equal priors. Of course

most versions of the principle of indifference have well-known problems and

typically lead to inconsistency (Joyce 2005), but there may be some less general

principle which applies in this case that isn’t problematic. But even a principle

tailored specifically for phylogenetics is going to be question-begging in this

context as the obvious response is that there is a reason to weight topologies

differently—namely, some shapes are consistent with more topologies than others.

If we believed that shapes should be equally probable, this (together with label

invariance) would determine a particular distribution on topologies that favors

topologies that are more balanced. In addition, we might also wish to assign equal

probabilities to each labeled history. Each distribution is different so which

distribution is to be preferred?

In other cases in science where we think that there is a good answer to this type of

question, the correct prior is always determined by looking at the physical process

that generates the values for the probabilities. In many cases, the process can vary.

Selecting a day ‘‘at random’’ might yield a prior probability of 1/365 for any

particular day being selected, but if the process of selection involves first selecting a

month at random and then selecting a day within that month, the probabilities would

be different. Regardless of the process, the point is that if we know the method of

selection, then we can determine how to model ignorance. Assigning priors is

problematic only in cases where we do not have an understanding of the underlying

process.

In the phylogenetic case, the tree is a result of the biological process of common

ancestry and descent with modification. We want to know the probability

distribution that results when a tree is produced by this process. Trees are the

result of the sequences passing down from organism to organism via reproduction

on the branches and splitting at the nodes when the organism gives rise to multiple

offspring which lead to different, extant taxa. A perfectly random branching process

is captured by the Yule birth process in which particles reproduce with a constant

probability of giving birth per particle per unit time so the Yule birth process seems

the ideal place to start our investigation.
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The Yule process

In 1924, G.U. Yule developed a statistical model to help explain why some genera

have many more species than others (Yule 1925). The model was based on thinking

of speciation as lineage splitting—one lineage gives birth to another without dying.

In the simplest case, the idea is that we start with a common ancestor and then the

probability of any particular lineage splitting in some small unit of time is the

constant kdt. Two splitting events happen in the same time period with probability

o(dt). As time passes, there are more and more lineages present, each with the same

probability of splitting until we reach the final result of n taxa. If at each slice of

time, each existing lineage has an equal chance of splitting, we call the process a

Yule pure birth process.

Another way to think about this process is by looking at the present and working

backwards. The coalescent process imagines n gene sequences existing at the

present. Then as we move back in time they will begin to coalesce. Each sequence

has an equal probability of coalescing with any other particular sequence and then

we go from n to n-1 sequences and repeat the process again. This process is

obviously just the inverse of the birth process and so the same mathematical rules

apply yielding the same probabilities for certain parameters such as shape and

topology (Kingman 1982).

For our purposes, we want to know the probability of getting a particular tree as

the result of a Yule process. The answer is that a Yule process produces each labeled

history with equal probability (Edwards 1970). Thus the distribution that each

labeled history should be equally probable a priori can be given a justification. The

justification is not the one provided by the principle of indifference, which says ‘‘I

can’t think of a reason why one labeled history should be more probable than

another.’’ Rather, the justification is that if the evolution of different taxa is the

result of random lineage splitting, then for n random taxa, the probability that they

form a particular tree topology is proportional to the number of labeled histories that

are consistent with that topology.

One might be worried that we are ignoring extinction. We could easily add

another parameter l where the probability of any particular lineage going extinct is

ldt. This is known as a birth–death process. Importantly, it leads to exactly the same

distribution on tree topologies. As long as the extinction happens randomly across

lineages, the prior probabilities will be the same (Thompson 1975). The pure birth

process, the birth–death process, and the coalescent process all lead to exactly the

same distribution—all labeled histories are equally probable.

The idea that the Yule process represents a ‘‘randomly branching tree’’ is not new in

the mathematical literature (Harding 1971; Aldous 2001). This idea is also fairly

standard in the biological literature. The Yule birth process (or more typically a birth–

death process) is widely used to study macroevolutionary trends. For example, the

discovery of broad-scale biogeographical patterns and the detection of differences in

speciation or extinction rates across lineages are standardly thought to depend on

comparing the accepted phylogeny to a null model of random branching. The null

model typically used for such comparisons is the Yule model (e.g. Mooers and Heard

1997 and many of the very large number of references therein). The Yule process is
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also widely used to study microevolutionary processes. The standard method of

studying intraspecies diversity will use a coalescent process to build gene genealogies

which are essential to testing hypotheses such as those concerning the strength of

selection at a particular site or testing the amount of gene flow between distinct

populations (Halliburton 2004, Hein et al. 2005). Despite the near-universal

acceptance of the Yule process being the underlying physical process for common

descent and therefore the production of phylogenetic trees, biologists virtually never

take this process into account when actually constructing trees! (For exceptions, see

Rannala and Yang 1996; Yang and Rannala 1997). The use of prior probabilities in

Bayesian phylogenetics makes thinking about the probabilities of trees unavoidable,

but the idea of a null model for a tree is required even in methods that do not

specifically attempt to use a prior probability distribution. As we shall see later,

ignoring these facts can lead to mistaken conclusions not only in constructing trees

which are best supported by the evidence, but also when we attempt to use those trees

to make further inferences about the evolutionary process. Theoretically, it is well

motivated to start insisting on such a change in methodology, but I now turn to the

question of what, if any, consequences making such a change will actually have.

We have already noted that the ‘‘Yule distribution’’—the probability distribution

of trees induced by a Yule process—is a different distribution than the uniform

distribution. With four taxa, there are 15 topologies and 18 labeled histories. Since

some topologies (those with the pectinate, asymmetric shape) are consistent with

only one labeled history and some are consistent with two (the balanced shape), the

priors shift from 1/15 on the uniform topology to either 1/18 or 2/18 depending on

whether we are looking at the asymmetric or the balanced tree. In general, more

asymmetric topologies will have their prior probabilities lowered and more balanced

trees will have theirs raised. There are many ways that the overall balance of a tree

could be measured (Mooers and Heard 1997), but certainly in the clear cases, the

result of a Yule process is that a tree that is more balanced will be consistent with

more labeled histories (there are more pathways to reach it) and thus is more

probable than any particular unbalanced tree.

The idea that balanced trees are consistent with more labeled histories and

therefore are more probable than unbalanced trees is exactly analogous to the claim

that if we flip a fair coin 100 times, we are more likely to get 50 heads than some

other number of heads. If the coin is fair, each particular sequence of heads and tails

is equally probable. Since 0 heads is only consistent with one sequence, it is far less

probable than 50 heads which is consistent with &1029 sequences. An important

side note is that we should not conclude that the Yule process will probably result in

a balanced tree. The appropriate conclusion to draw is that Pr(T1|T1 is

balanced) [ Pr(T2|T2 is unbalanced) not that Pr(Tree will be balanced) [ Pr(Tree

will be unbalanced). Far fewer tree topologies are balanced than unbalanced, so

even though each has a higher probability than those that are unbalanced, the

unconditional probability that a tree is balanced is still relatively low.

So we know that if we replace uniform priors with Yule priors, the prior

probabilities of unbalanced trees will go down while those of balanced trees will go

up. But does this difference really matter to their posterior probabilities? This will

depend on the particular problem. Problems can be constructed where the priors
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matter. Problems can be constructed where they don’t. With enough data, the

likelihoods of the various trees will completely swamp differences in the priors

between trees. But how much data is required and just how much this difference in

priors matters in realistic cases is something that will require careful quantitative

investigation.

It is widely known that the number of possible trees with n taxa =

2n� 3!! ¼ P
n

2
2n� 3 (Felsenstein 2004). Steel and McKenzie (2001) provide a

recursive algorithm for calculating the number of labeled histories consistent with a

particular topology. For each vertex v (node) let d(m) be the number vertices that are

its descendants (including itself). Note that this is the same as the number of taxa in

the subtree formed by that node minus 1. Now, the number of labeled histories

consistent with any particular tree topology =
ðn�1Þ!
PvdðvÞ. For example, the number of

labeled histories consistent with the perfectly balanced four taxa tree =
ð4�1Þ!
3�1�1

¼ 2.

Combined with the formula for the total number of possible labeled histories for n
taxa:

n!ðn�1Þ!
2n�1 (Edwards 1970) we now can calculate the prior probability of any

particular tree under the Yule model. To see directly whether this will affect the

posterior probability of any individual tree, we would need to calculate the

normalizing constant—Pr(Data)—which we can’t do. Another option is to run an

MCMC on some particular data set with uniform priors as is typically done and then

run the MCMC on the same data set with Yule priors instead of uniform priors and

simply check for differences in the results. This method requires us to recalculate

the entire posterior distribution just to see if there will be any significant difference

in the posteriors of particular trees. But there is another method that can tell us at

least some of what we want to know.

Imagine that we perform the calculations with uniform priors and get the result

that T1 has a higher posterior probability than T2. How probable is it that the results

would be different if we used Yule priors instead? For the order to switch, the ratio

of the posteriors would have to switch from being greater than 1 to being less than 1.

By Bayes Theorem, the ratio of the posterior probabilities is equal to the ratio of the

priors times the ratio of the likelihoods:

Bayes TheoremðOdds� Ratio formÞ PrðT1jDÞ
PrðT2jDÞ

¼ PrðDjT1Þ
PrðDjT2Þ

� PrðT1Þ
PrðT2Þ

Since the likelihoods themselves will not change, we can directly calculate the

effect of changing the priors. Since the old prior ratio was 1:1, if we want to switch

the ordering on trees, we need the new prior ratio to be greater than the reciprocal of

the likelihood ratio. So how large is the ratio of the priors? In the four taxa case, the

most balanced to least balanced ratio is only 2:1. But like all other effects that

depend on the number of possible trees, this is going to increase combinatorially. To

give an extreme example, the perfectly balanced tree with 64 taxa (it splits into two

subtrees of 32, each of those splits into two subtrees of 16, etc.) is consistent with
ð63�1Þ!

63�312�154�78�316 � 2:61� 1063 labeled histories. Since the maximally unbalanced

tree, which has splits of 1:63 then 1:62, then 1:61, etc., is consistent with only one

labeled history, 1063 is also the ratio of the prior probabilities of the trees. For

n = 128, this ratio rises to &4.1 9 10163. While the likelihood ratio can easily be
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greater than this for several thousand independent sites, these massive numbers

should certainly give pause to anyone who claims that using different priors would

not make any difference. Certainly they will make some difference to the overall

posterior distribution. Exactly how much difference they will make will depend on

the particular case and general conclusions will require further study. Regardless of

how often changing the priors dramatically affects the posteriors, we have at least

the beginnings of an explanation of why we should use one prior probability

distribution rather than another.

An important feature of this discussion is that it is not essential to this argument

that the Yule process perfectly captures the causal process by which evolutionary

trees are produced. In particular, it is clearly unrealistic that at a given time, each

extant lineage has the same probability of splitting. This paper takes the important

first step of using priors that at least attempt to be biologically relevant. There is no

known biological process that would lead to a uniform distribution on topologies.

As such, there can be no justification for using these priors. In addition, we can think

of the Yule model with no other effects as the simplest among a whole class of

branching models which might be used to generate priors. Further biological

investigation can help us improve our branching models and thus improve the

accuracy of our prior probabilities. The Yule model, not the uniform model, will

form the essential backbone of any such future investigations.

In addition, it needs to be pointed out that Yule process models how all of the tips

resulting from a common ancestor are expected to be related. This means that taxa

sampling will severely affect the model. If we are examining all of the tips that have

descended from some ancestor, then the Yule process will be adequate. Similarly, if

we randomly sample tips, this will not affect the distribution. However, if we use

some non-random method—such as sampling two organisms from each species

under investigation—it is easy to see that we should expect the tree to have a

different shape. A clear instance of this is the use of outgroups which guarantees

that the tree will be very imbalanced at the root—something that is improbable on a

Yule model. Depending on how we sample, we might be able to correct this bias (in

the two above cases, this is easy). But often times, we sample taxa non-randomly,

but not by answer process which we can build into our model. But this entire

discussion simply reinforces the point that it is essential to realize that not all trees

are equally probable a priori and that this fact can affect our results when it is

ignored.

The base-rate fallacy

Since using different priors on topologies could lead to different results in particular

phylogenetic studies, it could also lead to different results in studies that use

phylogenies to make further biological inferences. This is particularly relevant since

I have argued that phylogenies produced without attending to the Yule model are

not just in error, but that they are in error in a particular way. I will now examine an

example of this error. The base-rate fallacy is a common mistake made in everyday

reasoning. That mistake is to ignore the base-rate, or prior probability, of events
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when making inferences. Here is a standard example of medical testing often found

in the literature.

We take a random person in the United States and administer an HIV test which

is accurate in 95% of all cases. The test shows up positive. The proper conclusion to

draw is that this person probably does not have HIV. We can reach this conclusion

by noting that the prior probability that they have HIV can be approximated by the

base-rate of HIV in the population. In 2005, the CDC estimated that there are about

438,000 people living with HIV out of over 300 million in the US and its

dependencies giving us a prior probability of .00146 (Centers for Disease Control

and Prevention 2005). By Bayes’ Theorem,

PrðHIVj þ testÞ ¼ PrðþtestjHIVÞ � PrðHIVÞ
PrðþtestÞ

� 0:95� 0:00146

ð0:95� 0:00146Þ þ ð0:05� 0:99854Þ � 0:027

In other words, there is only 2.7% chance that this person actually has HIV. The

explanation is simple—5% of the people who don’t have HIV will get a positive test

result and this group is much larger than the group of individuals who actually have

HIV. Certainly, the positive test result raises the probability that this person has

HIV. In fact, it raises it by a factor of almost 20—but this only raises the probability

from 0.15% to about 2.7%. In general, if the false-positive rate is higher than the

base-rate, then there will be a less than 50% chance that they actually have the

disease in question. If we look at only the likelihood of having HIV (0.95) and

ignore the base-rate, we are committing the base-rate fallacy. While ignoring very

skewed base-rates is particularly bad, it is important to realize that it is always an

error to ignore base-rates regardless of what they are.

While the debate over how to assign prior probabilities might be seen as a debate

internal to Bayesianism, understanding the underlying process that generates

phylogenies is essential to making correct inferences regardless of methodology. If

the Yule process truly underlies the production of phylogenetic trees, then to ignore

it as Parsimony and Maximum Likelihood methods do is akin to committing the

base-rate fallacy. Similarly, using a prior distribution, but using the wrong one such

as when the uniform distribution is used, leads to the wrong conclusions. If we are

lucky enough to have data which show a very strong signal for particular clades, the

data will overcome the bias that these mistakes introduce, but this will certainly not

be the case in every instance.

As a practical example of this error, there is a large literature on how to make

inferences based on the shapes of trees and the consensus in the field is that trees

(based on published phylogenies) seem to be more asymmetric than we would

expect by chance (Huelsenbeck and Kirkpatrick 1996; Mooers and Heard 1997).

This has lead systematists to conclude, among other things, that effects such as clade

selection are prevalent and that phylogenies are not just the result of random

branching. What we would expect ‘‘by chance’’ is (appropriately) determined by

examining a Yule distribution, but the published phylogenies typically do not use

prior probabilities and if they do, they use a uniform distribution which is skewed
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toward asymmetry relative to the Yule distribution. Since the Yule process represents

random branching, the use of uniform priors on topologies (or the use of no priors at

all) have biased the results in favor of more asymmetric trees. In other words, we

should expect the result that published phylogenies are more asymmetric than

expected by the Yule process. By thinking about the base-rate fallacy, we can see that

if our data leads us to conclude that a tree is unbalanced, this might be a case where it

is more probable that the tree is more balanced, but that the data is misleading. Of

course not every case will be a false positive, effects such as clade selection and taxa

sampling bias certainly do affect inferred tree shapes, but the above analysis points to

an important project that still needs to be done – reexamining the data on tree shapes

to see just how much of the apparent difference between actual history and randomly

produced trees is simply an artifact of getting the history wrong in the first place due

to ignoring the process by which trees are generated.
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